

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Research Activities @ BFH Lab for Wireless Communications

Rolf Vogt Professor in Wireless Communications and Radio Frequency Engineering

Electrical Engineering and Information Technology Institute for Cybersecurity and Engineering ICE

Bern University of Applied Sciences

Wireless Communications Group

R/D- Team consisting of

- 2 Professors
- 4 Scientific collaborators
- 1 Lab Technician

What are our activities?

Main activities

Teaching

- Courses at both Bachelor and Master level
- Supervision of undergraduate and graduate students for bachelor and master studies
- Internships in the field of Radio Frequency Engineering/Software Defined Radio

R/D

- All but one 40% of FTE financed externally
- Innosuisse projects with SMEs (up to three-year projects)
- Directly financed projects
- Cost-effective services in the context of bachelor theses and diploma theses
- Measurement services in the field of high frequency technology

What are our core competences?

Core Competences

Radio Frequency Engineering, currently up to 26GHz

- fast mixed analog/digital/mixed circuits
- Antenna design
- "Business Idea":

Combining of RF Engineering by Software Defined Radio

- Using commercially available SDRs
- Development of dedicated SDRs, if needed
- Leading Etch RFSoC (4GHz BW)
- Fast digital and analog signal processing
 - FPGA, Embedded PCs

Focus Topic : RF Design & Software Defined Radio

- Capture of larger bandwidths from the RF spectrum
- Direct digitization (e.g. by subsampling) and conversion to (complex) baseband
- Further processing of the signals in the baseband using
 - ► FPGA
 - Embedded PCs
- Advantage:
 - development of reconfigurable systems,
 - great flexibility. These
 - can then be adapted relatively quickly to the most diverse needs of our (SME) customers.

Selected project examples

Project 1: SDR based active RADAR (cont.)

- Active radar with the most flexible generation of the waveforms
- Signal generation via SDR
- Up-/Downconversion 300 MHz 9 GHz with classical microwave technology
- Attachable expansion board
- Application for bird detection

SDR based active RADAR (cont.)

- Bird detection
 - Study purposes (biologists)
 - Protection from wind turbines
- Conventional solution:
 - Pulse radar, several kW
 - Large, high maintenance (tubes)
- Our solution:
 - FMCW radar, only 4 watts (!), compact
 - Signal conditioning: DC..300MHz RF part 9GHz
 - Measurement signal shape can be adapted to any specific measurement scenario
 - Detection radius 1.2km (practice)

SDR-based 9GHz-FMCW Radar

Projekt 2 : Through Wall Sensing

- Detection of movements behind one ... two walls
- Signal generation by SDR
- Up-/Downconversion 300 MHz 2.4 GHz with classical microwave technology
- New signal processing method
- > No calibration required during operation, only 2 antennas needed
- > Youtube demonstration video:

https://www.youtube.com/watch?v=EcVynxZvHcE&t=24s

More projects

On board Radio Direction Finder (Interferometer) upon Drones

- GPS/Orientation Sensor
- LimeSDR / Udoo Bolt
- Multi-view three-dimensional radar imaging to derive accurate digital Earth surface models

Thank you very much